Binary classification using ensemble neural networks and interval neutrosophic sets

نویسندگان

  • Pawalai Kraipeerapun
  • Lance Chun Che Fung
چکیده

This paper presents an ensemble neural network and interval neutrosophic sets approach to the problem of binary classification. A bagging technique is applied to an ensemble of pairs of neural networks created to predict degree of truth membership, indeterminacy membership, and false membership values in the interval neutrosophic sets. In our approach, the error and vagueness are quantified in the classification process as well. A number of aggregation techniques are proposed in this paper. We applied our techniques to the classical benchmark problems including ionosphere, pimaIndians diabetes, and liver-disorders from the UCI machine learning repository. Our approaches improve the classification performance as compared to the existing techniques which applied only to the truth membership values. Furthermore, the proposed ensemble techniques also provide better results than those obtained from only a single pair of neural networks. & 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiclass Classification using Neural Networks and Interval Neutrosophic Sets

This paper presents a new approach to the problem of multiclass classification. The proposed approach has the capability to provide an assessment of the uncertainty value associated with the results of the prediction. Two feed-forward backpropagation neural networks, each with multiple outputs, are used. One network is used to predict degrees of truth membership and another network is used to p...

متن کامل

Lithofacies Classification from Well Log Data using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict...

متن کامل

Recent developments in natural computation

The main objective of this special issue is to present readers with the significantly extended and improved versions of several high-quality articles presented at the Third International Conference on Natural Computation (ICNC’07). ICNC’07 was held jointly with The Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD’07) from August 24 to 27, 2007 in Haikou, Hainan, Ch...

متن کامل

Ensemble of Duo Output Neural Networks For Binary Classification

This paper presents an ensemble of duo output neural networks (DONN) using bagging technique to solve binary classification problems. DONN is a neural network that is trained to predict a pair of complementary outputs which are the truth and falsity values. Each component in an ensemble contains two DONNs in which the first network is trained to predict the truth and falsity outputs whereas the...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2009